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In transducing mechanical stimuli into electrical signals, at least some hair cells in vertebrate auditory and
vestibular systems respond optimally to weak periodic signals at natural, nonzero noise intensities. We under-
stand this stochastic resonance by constructing a faithful mechanical model reflecting the hair cell geometry
and described by a nonlinear stochastic differential equation. This Langevin description elucidates the mecha-
nism of hair cell stochastic resonance while supporting the hypothesis that noise plays a functional role in
hearing.

DOI: 10.1103/PhysRevE.72.051911 PACS number�s�: 87.19.Rr, 87.10.�e, 05.45.�a

I. INTRODUCTION

The vertebrate ear nonlinearly transduces mechanical en-
ergy into electrical impulses enabling us to sense sounds and
movements whose intensity varies a millionfold. Although
still incompletely understood, such mechanoelectrical trans-
duction is especially amenable to physical analysis �1,2�.
Hair cells are the key elements in both auditory and vestibu-
lar transductions, and they have been the subject of intense
study, including current research elucidating the chemical
constituents of some of their structural elements �3–5�. Re-
cent modeling �6,7� suggests that feedback mechanisms may
self-tune some hair cells to an oscillatory instability enabling
them to actively amplify signals. However, other experi-
ments �8–10� suggest that a passive amplification mechanism
involving noise and nonlinear dynamics may also be in-
volved. While the cochlea’s outer hair cell bundles are at-
tached to an overarching membrane, its inner hair cell
bundles are free to experience significant Brownian motion,
and the resulting noisy environment may actually enhance
their sensitivity. Although dramatically outnumbered by
outer hair cells, inner hair cells are responsible for most of
the auditory information sent to the brain—and seem to be
designed with noise in mind.

Stochastic resonance �11,12� is a noise-enhanced response
to a weak periodic signal that has been observed in many
nonlinear physical and biological systems. Experiments have
demonstrated stochastic resonance in the vertebrate auditory
system �13� and in frog saccular hair cells �8–10�. The latter
experiments have been modeled �14� theoretically using time
and temperature-dependent transition rates for a bistable po-
tential representing open and closed transduction states. In
this paper, we present a nonlinear Langevin model of hair
cell stochastic resonance in these experiments. The model
directly reflects the mechanics of the hair cell geometry. It is
conceptually simple, although analytically difficult. �It incor-
porates, for example, two independent colored noise
sources�. Consequently, we investigate the model numeri-
cally. With physiologically plausible parameters, it success-
fully reproduces the salient features of the experiments while
simultaneously enabling the testing of further hypotheses.

II. HAIR CELL MODEL

Figure 1 is a schematic diagram of a hair cell, whose
stereocilia pivot in unison with the motion of the surrounding
fluid, thereby opening and closing ion channels in the cilia
walls, the first stage in sending electrical impulses to the
brain. The transduction is so quick that it must be directly
mechanical �15�. The canonical model �16� involves a me-
chanical linkage applying tension to a transduction channel
gate via a tether connecting the top of one cilium to the side
of its taller neighbor. Because the shearing induced by the
pivoting of the cilia does not break the tether, and because
the channel gate can rattle open and closed when the cilia are
held fixed �17�, the mechanical linkage must be elastic. Cut-
ting the tether eliminates the tension on the gate, and hence
the elastic element must either be the tether or be in series
with it �18�. The gate itself exhibits a positive restoring force
for large displacements but negative restoring force for small
displacements �19�, and so we model it with a bistable po-
tential, whose minima correspond to open and closed con-
figurations, which probably reflect two different conforma-
tions of a protein gate molecule.

III. LANGEVIN DESCRIPTION

We idealize the stereocilia as a bundle of two parallel rods
that pivot with the motion of fluid in the ear, sinusoidally in
response to acoustic waves and noisily in response to Brown-
ian motion, so that the horizontal displacement of the bundle
tip is

xB�t� = � sin�2�ft� + �B�B�t� , �1�

where the Gaussian noise �B�t� is exponentially correlated,

��B�t��B�t + ��� = e−���/�B, �2�

because the fluid viscosity damps the higher frequencies.
�The resulting position fluctuation spectrum is somewhat dif-
ferent from the spectrum of a hair cell model that spontane-
ously oscillates �7�, but our model operates in a bistable
rather than an oscillatory regime.�

We assume the gate has length L, moment arm �	L, and
swings through a large angle 
 as the rods tilt through a
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small angle �, as shown schematically in Fig. 2. The gate
vector �� = �−� sin�
−�� ,� cos�
−�� ,0	, and the coordinates
r�1= �d ,0 ,0	, r�2=r�1+ �H sin � ,H cos � ,0	, r�3=r�2+�� , and r�4

= �h sin � ,h cos � ,0	. Hence the link vector l�=r�4−r�3. We
model the tip link as an elastic tether that pulls the gate with

a force F� =k�l− l0�l̂, where l0 is the equilibrium length of the

link, and l̂ is a unit vector along the link pointing away from

the gate. This produces a torque ��L=�� �F� whose magnitude
is a trigonometric function of both 
 and �.

The tip link tethers are not springs, as experiments have
observed them to slacken �20,21� for negative displacements.
We represent this in Fig. 1 by the decoupler in series with the
spring and, in the simulation, we multiply the tether force by
the unit step function 
�l− l0�, if necessary, to ensure that the
tether only pulls and never pushes.

We model the gate dynamics with the asymmetric quartic
�tilted double well� potential

UG�
� = 4U0
−
1

2
�
 − c

c
�2

+
1

4
�
 − c

c
�4
 + A�
 − c� ,

�3�

where the constants U0, c, and A determine the potential
height, radius, and asymmetry. The corresponding gate
torque is �G�
�=−UG� �
�.

The channel gate is probably a protein with a typical mass
of tens to hundreds of kilodaltons, where 1 kDa
�103 a .m.u . �10−24 kg=10−15 �g. Its tiny size makes its
inertia negligible compared to the viscosity of the ambient
fluid. Hence, we assume the Langevin equation of motion

�
̇ = �G�
� + �L�
,�� + �G�G�t� , �4�

where � is the angular friction coefficient of the gate, and the
overdot indicates time differentiation. The bundle tip dis-
placement xB of Eq. �1� drives the Langevin equation via the
relation ��xB /H from Fig. 2. The additional stochastic term
�G�t� models gate thermal fluctuations, and we choose the
rms gate noise �G such that the ratio of gate opened time to
the gate closed time is the Boltzmann factor

to/tc = e−�U/kT, �5�

where T is the temperature, and �U is the potential energy
difference between the opened and closed states when the
stereocilia are fixed at the equilibrium position �=0. We take
the transduction current to be proportional to sgn�
−c�, so

that it is linearly dependent on the gate angle 
, but binary
filtered to obtain a stylized version of the switchlike response
of an actual channel gate.

IV. TYPICAL PARAMETERS

We adopt the length, time, and mass scales of 1 nm
=10−9 m, 1 ms=10−3 s, and 1 �g=10−9 kg. In our computer
simulations, we set these quantities to unity to preserve pre-
cision. In these units, 1 zJ=10−21 J=1 �g nm2/ms2 and
1 yW=10−24 W=1 �g nm2/ms are also unity, and room
temperature corresponds to kT��1/40�eV�4 zJ.

The viscosity and density of the endolymph, the
fluid bathing the hair cells, is similar to that of water
at room �or body� temperature �22,23�. In particular, the en-
dolymph’s viscosity is ��1 cP=10−3 Pa s=10−6 MPa ms
=10−6 yW/nm3. Recalling that L�� is the gate length, if � is
a characteristic speed, then ��=F���� /L�L2 and the linear
friction coefficient ���L. Similarly, if � is a characteristic
angular speed, then �� /L���=��LF=L�� and the angu-
lar friction coefficient ���L2��L3. Thus, if L�10 nm,
then ��10−5 yW/nm2 and ��10−3 yW. �The model is ac-
tually insensitive to the precise value of �.�

Physiologically plausible parameters include a potential
energy barrier height U0 of a few kT and a barrier radius c of
a radian or two �corresponding to the range of swing of the
gate�. Hair bundle heights and separation H, h, and d are
micron sized with a geometric gain g= �H−h� /H of about a

FIG. 1. �Color online� Simplified cross sec-
tions of an inner hair cell �left�, bundle of pivot-
ing stereocilia with tip link tethers �center�, and
ion channel with a schematic gate �right�. Motion
is primarily in the plane of the figure.

FIG. 2. �Color online� Schematic diagram exaggerates the ste-
reocilia tilt angle � and the transduction channel gate moment arm
� but not the gate angle 
. In reality, ��1 and ��H−h�d.
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tenth �6,7�. To compare with experiment, the signal ampli-
tude � is a few nanometers and the signal frequency f is
about a kilohertz. Typical stereocilia Brownian motion rms
noise �B is a few nanometers at the tip with correlation time
�B of about a millisecond �due to viscous drag and corre-
sponding to the experimental kilohertz low-pass filter �8��.
The link stiffness is a few piconewtons per nanometer �21�,
and its equilibrium length is about half a micron. We esti-
mate the gate moment arm to be a few nanometers.

V. ANALYSIS

We numerically integrate Eq. �4� using the algorithm of
Fox et al. �24� with an integration time step dt of about ten
nanoseconds. With typical parameters and the tip link tether
broken, the effective potential U for the combined gate and
link is many kT deep, corresponding to the gate being
“locked” closed, and this is in good agreement with experi-
ment. However, with the link attached and sinusoidally
driven, the effective potential is relatively shallow, bistable,
and dynamic, rocking back and forth. The link torque is posi-
tive at all gate angles, meaning the link is always under
tension, and fluctuates in time, but more so at the closed
position than at the open, as the link is stretched more when
the gate is closed. When the gate opens, the tension in the
link drops. An angular probability distribution reveals that
the swinging gate is mostly open or closed and rarely in
between, like a screen door flapping in the breeze.

We spectral analyze the numerically generated and binary
filtered time series sgn�
−c� with a temporal sampling of
�t=2−10 ms�1 �s and a frequency resolution of �f
=2−8 kHz �3.9 Hz. We Welch window the time series to
reduce bin leakage, average 28 spectra, and find a sharp fre-
quency peak of height S at the drive frequency superimposed
on a Lorentzian background of height N. We compute the
signal-to-noise ratio R= �S /N−1� /G�0, where the process-
ing gain G=5/6 accounts for the Welch window scaling of
narrow-band peaks. Figure 3 shows the signal-to-noise ratio

R as a function of rms noise �B for one set of plausible
parameters, those of the “benchmark model” listed in Table I.
The stochastic resonance peak at a few nanometers is in good
agreement with the biological data �8�.

The mechanical connectivity of the model interrelates the
parameters in subtle ways. In addition, while the location of
the stochastic resonance is robust with respect to changes in
some of the parameters, such as the friction coefficient �, it
is sensitive to changes in other parameters, such as the tip
link equilibrium length, which tension the tip link tether. In
fact, hair cells have fast and slow adaptation mechanisms,
reacting in less than a millisecond to tens of milliseconds,
that continually adjust this tension �15,25�. For example, in
slow adaptation, the hair cell geometry is dynamic because
the channel gates are connected to myosin motors that climb
and slide along actin filaments in the stereocilia.

To further test the model, we consider the hair cell’s
displacement-response curve, a plot of the channel gate open
probability Po versus the mean bundle tip displacement �xB�
in the absence of a sinusoidal signal but in the presence of
the background noise characteristic of stochastic resonance.
In the benchmark model, the displacement-response curve
resembles a sigmoid that naturally opens over a scale of
�1 nm. In actual experiments, the hair cell opens over
�100 nm. How can we reconcile these two results? Inspired
by the emerging understanding of hair cell adaptation, we
extend the model by incorporating the retensioning of the tip
link tether, which we simply accomplish by allowing the
tether’s equilibrium length to change with the time-averaged
bundle tip location �xB��H��� according to

l0 → l0 + r�xB� , �6�

where r is a dimensionless rate-of-change parameter. Since
normally, in the signal-to-noise experiments, the time-
averaged bundle tip location vanishes �xB�=0, this does not

TABLE I. Benchmark model parameters.

Quantity Symbol Value�s�

Signal frequency f 0.3 kHz

Signal amplitude � 2 nm

Rod separation d 500 nm

Rod height tall H 3000 nm

Rod height short h 2700 nm

Tip link stiffness k 8 pN/nm

Tip link equilibrium length l0 580 nm

Bundle tip noise r.m.s. �B 0–25 nm

Bundle tip noise correlation time �B 1 ms

Gate friction � 0.001 yW

Gate potential height U0 12 zJ

Gate potential half-width c � /4 rad

Gate potential asymmetry A 45 pN nm

Gate moment arm � 2 nm

Gate noise r.m.s. �G 7 pN nm

Gate noise correlation time �G 1 ms

FIG. 3. �Color online� Signal-to-noise ratio R as a function of
bundle tip r.m.s. noise �B for the benchmark model parameters of
Table I with �solid line� and without �dashed line� gate noise �G,
superimposed on biological data from Ref. �8� �dots�. The gate
noise shifts the peak to lower bundle tip noise and broadens it. The
model response at 2–3 nm is 5–10 % better than at zero.
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affect the previous results, but it does dramatically broaden
the displacement-response curve, as seen in Fig. 4, where a
modest rate-of-change of r�0.08 produces good agreement
with experiment �8�. �Note that the time scale for the reten-
sioning of the tip link tether is slow compared to the oscil-
lation time scale of Fig. 3 but fast compared to the data
acquisition time of Fig. 4.�

VI. CONCLUSIONS

In summary, the Langevin model captures the main fea-
tures of hair cell stochastic resonance with physiologically
plausible parameters. While refinements of the model and

further experiments may be needed to optimize the model
parameters, the current correspondence between simulation
and experiment strengthens our confidence in the biophysics
of the phenomenon and in the suggestion that noise in the
inner ear can be sometimes helpful rather than always harm-
ful. The Langevin model vividly demonstrates one way the
vertebrate ear may have evolved to exploit noise to detect
faint sounds, and we suggest that this mechanism is comple-
mentary to active amplification schemes. The fact that both
gate noise and bundle noise are essential to get the physics
right supports a hypothesized �8,14� division of duty between
the outer hair cells, whose stereocilia are coupled to an over-
arching membrane, and the inner hair cells, whose stereocilia
are free: The former may actively amplify signals while the
latter may exploit bundle �and gate� noise to boost signal
detection. Finally, the Langevin model can be generalized
and employed in diverse directions, such as attacking the
open question of whether the tip link tether itself is the gat-
ing spring or whether it is merely in series with the gating
spring �18�; investigating the possibility of hair cell array-
enhanced stochastic resonance �26–28�; and exploring the
advantage �or not� of having a gate at each end of the tether.
Such questions remind us that deep inside the vertebrate ear
is a simple but ingenious mechanical system fine-tuned to
exploit ambient noise to detect the slightest movement or
faintest whisper.

Acknowledgments

J.F.L. thanks The College of Wooster for making possible
his sabbatical at Georgia Tech. This work was supported in
part by ONR Grant No. N00014-99-1-0592. We thank
Fernán Jaramillo for helpful discussions.

�1� T. Duke and F. Jülicher, Phys. Rev. Lett. 90, 158101 �2003�.
�2� T. M. Squires, Phys. Rev. Lett. 93, 198106 �2004�.
�3� J. Siemens et al., Nature �London� 428, 950 �2004�.
�4� C. Söllner et al., Nature �London� 428, 955 �2004�.
�5� D. P. Corey et al., Nature �London� 432, 723 �2004�.
�6� A. Vilfan and T. Duke, Biophys. J. 85, 191 �2003�.
�7� B. Nadrowski, P. Martin, and F. Jülicher, Proc. Natl. Acad. Sci.

U.S.A. 101, 12195 �2004�.
�8� F. Jaramillo and K. Wiesenfeld, Nat. Neurosci. 1, 384 �1998�.
�9� F. Jaramillo and K. Wiesenfeld, Chaos, Solitons Fractals 11,

1869 �2000�.
�10� A. Indresano, J. Frank, P. Middleton, and F. Jaramillo, J. As-

soc. Res. Otolaryngol. 4, 363 �2003�.
�11� L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Rev.

Mod. Phys. 70, 223 �1998�.
�12� P. Hänggi, ChemPhysChem 3, 285 �2002�.
�13� F. Moss, in Contemporary Problems in Statistical Physics, ed-

ited by G. H. Weiss �SIAM, Philadelphia, 1994�, p. 205.
�14� M. Bennett, K. Wiesenfeld, and F. Jaramillo, Fluct. Noise Lett.

4, L1 �2004�.
�15� P. G. Gillespie and J. L. Cyr, Annu. Rev. Physiol. 66, 521

�2004�.

�16� D. P. Corey and A. J. Hudspeth, J. Neurosci. 3, 962 �1983�.
�17� W. M. Roberts, J. Howard, and A. J. Hudspeth, Annu. Rev.

Cell Biol. 4, 63 �1988�.
�18� D. P. Corey and M. Sotomayor, Nature �London� 428, 901

�2004�.
�19� P. Martin, A. D. Mehta, and A. J. Hudspeth, Proc. Natl. Acad.

Sci. U.S.A. 97, 12026 �2000�.
�20� J. A. Assad and D. P. Corey, J. Neurosci. 12, 3291 �1992�.
�21� J. Howard and A. J. Hudspeth, Neuron 1, 189 �1988�.
�22� T. M. Squires, M. S. Weidman, T. C. Hain, and H. A. Stone, J.

Biomech. 37, 1137 �2004�.
�23� J. P. Bronzino, The Biomedical Engineering Handbook �CRC

Press, Boca Raton, 2000�.
�24� R. F. Fox, I. R. Gatland, R. Roy, and G. Vemuri, Phys. Rev. A

38, 5938 �1988�.
�25� R. A. Eatock, Annu. Rev. Neurosci. 23, 285 �2000�.
�26� P. Jung, U. Behn, E. Pantazelou, and F. Moss, Phys. Rev. A 46,

R1709 �1992�.
�27� J. F. Lindner, B. K. Meadows, W. L. Ditto, M. E. Inchiosa, and

A. R. Bulsara, Phys. Rev. Lett. 75, 3 �1995�.
�28� J. J. Collins, C. C. Chow, and T. T. Imhoff, Nature �London�

376, 236 �1995�.

FIG. 4. �Color online� Near stochastic resonance, open probabil-
ity Po versus mean bundle tip location �xB� �solid line� superim-
posed on biological data from Ref. �8� �dots�.

LINDNER, BENNETT, AND WIESENFELD PHYSICAL REVIEW E 72, 051911 �2005�

051911-4


